

Errors Due to the Reflectivity of Calibration Targets

J. Randa, D.K. Walker, A.E. Cox, and R.L. Billinger

Electromagnetics Division NIST Boulder, Colorado

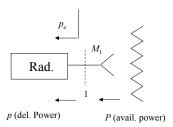
IGARSS, 23 Sept. 2004

I. INTRODUCTION

- NIST microwave radiometry effort 30⁺ years experience in noise and antenna metrology at NIST; recently began doing remote-sensing radiometry, combining the two.
- Developing microwave radiometry cal stds:
 - E.g., Randa *et al.*, "Standard Radiometers and Targets for Microwave Remote Sensing," IGARSS-04
- Related issue is the (non-ideal) reflectivity of calibration targets. This work describes:
 - Causes
 - Expressions (approximate) for T_B error introduced
 - Measurement examples

- Calibration targets close to the sensing antenna:
 - linear radiometers need \geq two standards for calibration.
 - satellites: cold sky, if possible (far-field)
 - otherwise: hot & cold targets (near-field)
 - Scene is always far-field
- Near-field targets introduce two general types of error in a total-power radiometer:
 - Antenna+target affects antenna pattern, directivity (ignore)
 - $-\Delta\Gamma$ at antenna output due to non-ideal target (this work):
 - Difference in M (mismatch factor) for target, scene
 - Difference in system F and G_{av} " " "

- Theoretical Framework
 - Radiometer equation (common approximation)
 - Modifications for $\Delta\Gamma$ effects
 - $-T_B$ uncertainty estimates
- Measurements
 - AIMR radiometer, antenna & target (37 GHz)
 - NASA target & NOAA antenna (54 GHz)
- Numerical estimates
- Summary



II. THEORETICAL FRAMEWORK

Radiometer equation:

$$\begin{split} p_{1} &= M_{1}P_{1} + p_{e,1} \\ M_{1} &= \frac{\left(1 - \left|\Gamma_{ant}\right|^{2}\right)\left(1 - \left|\Gamma_{r}\right|^{2}\right)}{\left|1 - \Gamma_{ant}\Gamma_{r}\right|^{2}} \end{split}$$

- •View cal targets h and c, unknown scene x.
- •If M_1 and $p_{e,1}$ are the same for all three cases (h, c, and x) then

$$(T_x - T_c)_0 = \frac{(p_x - p_c)}{(p_h - p_c)} (T_h - T_c)$$

...but what if M_1 and $p_{e,1}$ are *not* the same for all three cases?

Modified Radiometer Equation

• Including the effect of differences in M_1 and $p_{e,1}$ for the three cases:

Mismatch changes $T_x - T_c = \left(T_x - T_c\right)_0 (1 + \delta_1) + \Delta_2 + \Delta_3$

[Details described in upcoming TGARSS paper]

 F_N and G_{av} changes

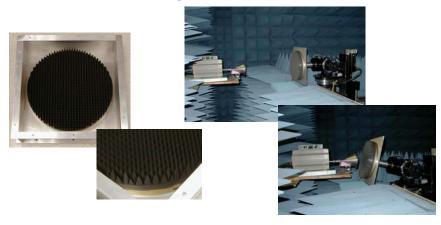
Useful approximations for $\delta 1$, $\Delta 2$ and $\Delta 3$:

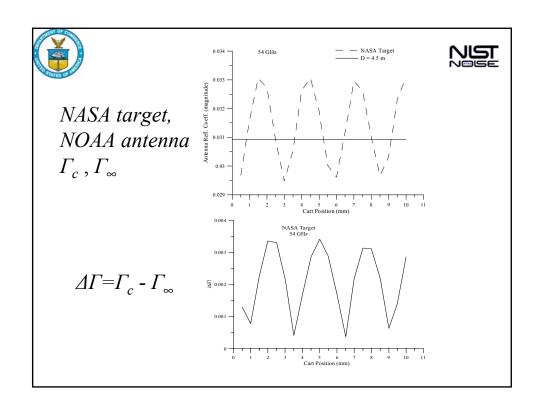
- Assume antenna $\Gamma_h = \Gamma_c$
- Γ_{∞} is refl. coeff. of ant. looking at distant scene
- Γ_r is refl. coeff. of radiometer at plane 1

$$\begin{split} & \delta_1 \approx 2 \, \mathrm{Re} \big[(\varGamma_r - \varGamma_\infty) \varDelta \varGamma \big], \\ & \varDelta_2 \approx 2 T_c \, \mathrm{Re} \big[(\varGamma_r - \varGamma_\infty) \varDelta \varGamma \big] = \delta_1 T_c, \\ & \varDelta_3 \approx 2 X_1 \, \mathrm{Re} \big(\varGamma_\infty \varDelta \varGamma \big) + 2 \, \mathrm{Re} \big(X_{12} \varDelta \varGamma \big), \end{split}$$

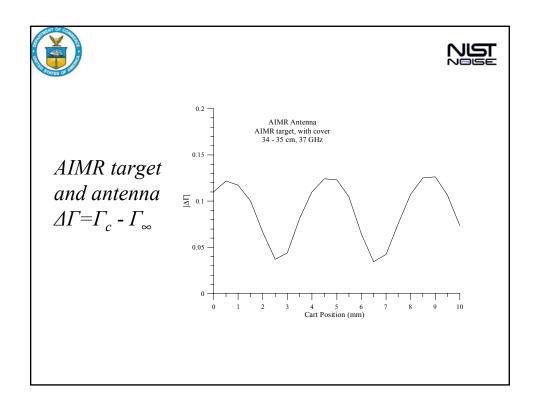
where X_1 and X_{12} are noise parameters of the radiometer. So, we need to know or estimate Γ_r , Γ_∞ , $\Delta\Gamma$, X_1 , and X_{12} .

Measure with ANA




III. MEASUREMENTS




• Measured Γ_c , Γ_∞ (thus $\Delta\Gamma$) with ANA for several combinations of antenna and target.

NASA target and NOAA antenna

Reciever Noise Parameters

- Use Meys' method to measure X_1 and $|X_{12}|$ at AIMR receiver input at 37 GHz:
 - $X_1 \approx 223 \text{ K}$
 - $|X_{12}| \approx 37.6 \text{ K}$
- For a total-power radiometer with an input isolator, $X_1 \approx T_I$, $X_{12} \approx -T_I S_{11}^I$,

$$\Delta_2 + \Delta_3 = 0$$

 \rightarrow Only remaining error is δ_1

IV. NUMERICAL ESTIMATES

• Total error introduced by using simple form of radiometer equation depends on Γ_r ; assume it's 0.

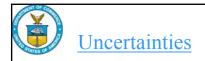
$$\Delta_{tot}^{(0)} \approx 2(X_1 - T_{x,0}) \operatorname{Re}(\Gamma_{\infty} \Delta \Gamma) + 2 \operatorname{Re}(X_{12} \Delta \Gamma)$$
For actual rad., use $(\Gamma_r - \Gamma_{\infty})$

• Standard uncertainty u given by

$$u_{tot}^{(0)} = \sqrt{\left\langle \left(\Delta_{tot}^{(0)}\right)^{2}\right\rangle} \text{ RMS over reasonable values}$$
of unknown parameters:
$$\text{ant} \rightarrow \text{target dist.} \qquad \angle X_{12} - \angle \Delta \Gamma$$

$$= 2\left\{ (X_{1} - T_{x,0})^{2} \left\langle (\text{Re}(\Gamma_{\infty} \Delta \Gamma))^{2} \right\rangle + \frac{1}{2} \left| X_{12} \right|^{2} \left\langle \left| \Delta \Gamma \right|^{2} \right\rangle \right\}^{1/2}$$

Uncertainties



• AIMR antenna & target, $T_{x,0}$ from 200 K to 300 K:

$$u_{tot}^{(0)} \approx \sqrt{2} \, \left| X_{12} \right| \left| \Delta \Gamma \right|_{RMS} \approx 5.2 \, K$$

- Prior AIMR cal checks show agreement to within ~2 K
 - $-|X_{12}|$ may be overestimated due to meas. time span
 - Spare feedhorn w/o reflector may differ from actual components
 - RMS value is an average; actual instrument is just one position
- Add input isolator with $|S_{11}|=0.025$; for $|T_{x,0}-T_a| \le 50 \text{ K}$

$$u_{tot}^{(0)} \approx 1 K$$

• NOAA ant., NASA target, T_{x.0} from 200 K-300 K:

$$u_{tot}^{(0)} \approx 0.0033 \left| X_{12} \right|$$

- $|X_{12}|$ could be 100 K or more, so uncertainty could be ≥ 0.3 K
 - Significant for some radiometers to be deployed in the next decade
- With an input isolator:

$$u_{tot}^{(0)} \approx 0.95 K \times \left| S_{11}^{I} \right|$$
$$u_{tot}^{(0)} \leq 0.1 K$$

V. **SUMMARY**

- Considered error arising from difference in $\Gamma_{\rm ant.}$ when viewing distant scene and nearby cal target
- Developed expressions for approximate T_B error; performed measurements enabling us to estimate u for representative cases
- For total-power radiometers w/o isolators, u can be several kelvins (tenths in good cases)
 - Sensitive to $\Gamma_{\text{ant.}}$, Γ_{r} , target reflectivity, rcvr X's, and antenna-target spacing
- Should measure (or estimate) Γ's and X's to estimate uncertainties
- Could correct for these effects w/full rad eq'n

ACKNOWLEDGMENTS

• Thanks to:

- Al Gasiewski and Vladimir Leuski of the NOAA Environmental Technology Laboratory for loan of an antenna and for helpful discussions
- Paul Racette and Jeff Piepmeier of NASA Goddard Space Flight Center for loan of a target and for helpful discussions
- Meteorological Service of Canada, Environment Canada (Atmospheric and Climate Science Directorate and Canadian Ice Service) for the use of the AIMR system.
- Dennis Camell of NIST for assistance in using the NIST anechoic chamber.